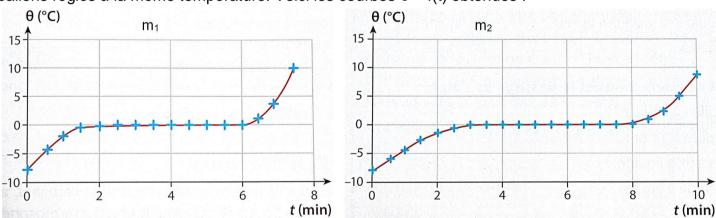
Ch 6 - Exercices

Exercice I Les états physiques du cyclohexanol

Le graphique ci-contre représente l'évolution de la température en fonction du temps lorsque du cyclohexanol, initialement à l'état solide, est chauffé à pression constante.

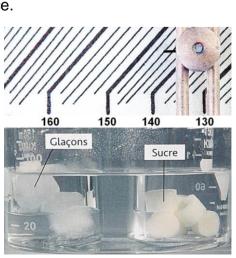

- 1) Interpréter les différentes étapes (5) de ce graphique en précisant pour chacune les états physiques et l'évolution de la température.
- 2) à partir du graphique, donner les températures de changement d'état du cyclohexanol en indiquant la nature du changement d'état.
- 3) Donner la valeur de la température de solidification en justifiant.
- 4) À propos du sens de transfert d'énergie :
- a. Est-il le même dans toutes les étapes ? Justifier. Si oui, le cyclohexanol reçoit-il ou cède-t-il de l'énergie ? Sinon, expliquer pour chacune des étapes.
- b. Lors des changements d'état, les transformations sont-elles exothermiques ou endothermiques ? Justifier.

Si oui, le cyclohexanol reçoit-il ou cède-t-il de l'énergie ? Sinon, expliquer pour chacune des étapes.

- b. Les transformations sont-elles exothermiques ou endothermiques? Justifier.
- 5) Ces propositions sont-elles exactes? Justifier.
- a. Le cyclohexanol est un corps pur.
- b. À 30 °C, l'agitation des molécules est plus importante qu'à 10 °C.

Exercice II Transformation physique

Placées dans un bécher, deux masses de glace m_1 et m_2 différentes sont mises à chauffer dans deux ballons réglés à la même température. Voici les courbes $\theta = f(t)$ obtenues :



- 1) Nommer le changement d'état intervenant dans cette expérience et justifier.
- 2) Écrire l'équation de la transformation correspondante.
- 3) Laquelle des deux masses m₁ ou m₂ est la plus élevée ? Justifier.
- 4) Les durées de changement d'état Δt_1 et Δt_2 sont respectivement proportionnelles aux masses m_1 et m_2 .
- a. Déterminer Δt_1 et Δt_2
- b. Établir le tableau de proportionnalité ou la règle de correspondance.
- c. Si $m_2 = 250$ g, exprimer et calculer m_1 .

Exercice III Convaincre

Pour expliquer la différence entre fusion et dissolution, deux expériences sont réalisées.

- 2 Une espèce pure (eau ou sucre) est déplacée sur un banc de Köfler. Le résultat est ci-contre.
- 1 Deux béchers, l'un contenant des glaçons et le second des morceaux de sucre, sont plongés dans un grand cristallisoir contenant de l'eau tiède.
- 1) a. Quelle grandeur permet de déterminer un banc de Köfler?
- b. Expliquer comment procéder sur ce banc pour déterminer cette grandeur.

A (°C)

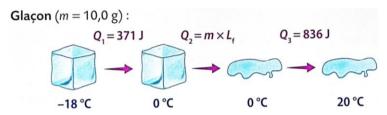
100

- c. Donner la valeur de la grandeur correspondant à cette espèce.
- d. Nommer et justifier la nature de l'espèce testée.
- 2) Pourquoi les glaçons flottent-ils à la surface de l'eau ?
- 3) a. Exploiter ces expériences pour distinguer fusion et dissolution.
- b. Proposer éventuellement d'autres mesures pour corroborer vos conclusions.
- 4) À présent, dans une pièce à 20 °C, des glaçons sont placés dans un bécher contenant du cyclohexane.
- a. Les glaçons flottent-ils sur le cyclohexane ? Justifier.
- b. Qu'observe-t-on dans le bécher une fois les glaçons fondus. Réaliser un schéma légendé.

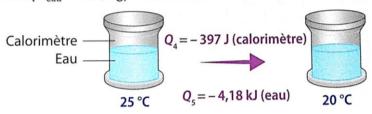
Données

Le cyclohexane et l'eau ne sont pas miscibles.

Espèce	eau	glace	cyclohexane
Masse volumique en kg.m ⁻³	$\rho_{\rm e} = 1000$	$\rho_{\rm g} = 917$	$\rho_{c} = 779$


Exercice IV Transferts d'énergie

Un glaçon de masse m = 10,0 g à la température de - 18 °C est plongé dans une masse m_{eau} = 200,0 g d'eau liquide à la température de 25 °C contenue dans un calorimètre à la même température. La température finale de l'ensemble est de 20 °C.


Données ci-contre

Diagrammes des énergies transférées pour l'eau et la glace.

- 1) Donner les signes des énergies transférées Q₁, Q₃, Q₄ et Q₅. Justifier
- 2) L_f est l'énergie massique de fusion de l'eau. Exprimer L_f en justifiant et la calculer.

Eau $(m_{eau} = 200,0 \text{ g}) + \text{calorimètre}$:

Exercice V Fonte des glaciers

Depuis 1911, la superficie du glacier d'Ossoue (Pyrénées) est passée de 90 à 40 ha et son épaisseur moyenne a diminué de 75 m pour atteindre 50 m actuellement.

Données

1 ha = 1 hectare = 10^4 m^2

Énergie de fusion de la glace $L_f = 334 \text{ kJ.kg}^{-1}$ Masse volumique de la glace $\rho_g = 917 \text{ kg.m}^{-3}$ Énergie échangée lors d'un changement : $Q = m \times L_f$

- 1) Exprimer et calculer le pourcentage de diminution du glacier.
- 2) Exprimer et calculer le volume dont a diminué le glacier entre 1911 et actuellement.
- 3) Exprimer et calculer la masse de glace perdue pendant la même période.
- 4) Exprimer et calculer l'énergie reçue par la glace du glacier lors de sa fonte.